Flip-Flop Circuits

Objective:
T'o construct and study the operations of the following circuits:

w RS and Clocked RS Flip-Flop

) D Flip-Flop

ai) JK and Master-Slave JK Elip-Flop
(v) T FEhp-Flop

Overview:

So far you have encountered with combinatorial logic, i.¢. circuits for which the output
depends only on the inputs. In many instances 1tos desirable to have the next output
depending on the current output. A simple example is a counter, where the next number
to be output is determined by the current numbet stored. Circuits that remember their
current output of state are often called sequential logic aircuits. Clearly, sequential logie
requires the ability (o store the current state. In other words, memory is required by
sequential logie cireaits, which can be created with boolean gates. If you arrange the
gates correctly, they will remember an mput value. This simple concept is the basis of
RAM (random access memaory) in computers, and also makes it possible to create a wide
variety of other useful cireuits.

Memory relies on a concept called feedback. That is, the output of a gate is fed
back into the input. The simplest possible feedback circuit using two inverters is shown
below (Fig. 1)

Fig.1: Simplest realization of feedback circuit

If you follow the feedback path, you can see that if Q happens to be 1 (or). it will
alwavs be 1 (or 0). Since it's nice to be able to control the circuits we create, this one
doesn't have much use == but it does let you see how feedback works. It turns out that in
“real” sequential ¢ircuits, you can actually use this sort of simple inverter feedback
approach. The memory clements in these circuits are called flip-flops. A flip-flop circuit
has two outputs, one for the normal value and one for the complement value of the stored
bit. Binary information can enter a flip-flop n a variety of ways and gives rise o
different types of flip-flops.

RS Flip-Flop

RS flip-flop is the simplest possible memory clement It can be constructed from
two NAND gates or two NOR gates Let us understand the operation of the RS flip-flop
using NOR gates as shown below using the truth table for ‘A NOR B’ gate. The inputs R
and S are referred 1o as the Reset and Set inputs. respectively The outputs Q and Q are
complements of each other and are referred to as the normal and con plement outpets
respectively. The binary state of the flip-flop 1s taken to be the value of the normal
output. When Q=1 and ('=0. it is in the ser state (o |-state). When Q=0 and Q=1 111510
the reset/clear state (or ()-state).

Circuit Diagram:

R (reset) A B A:D
Q 00 1
01 0
Qo 10 0O
S (set) 11 @

e S=1 and R=0: The output of the bottom NOR gate is equal to zero, Q=0 Hence
both inputs to the top NOR gate are equal to 0, thus, Q=1. Hence. the nput
combination S=1 and R=0 leads to the flip-flop being set o Q=1

e S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and
Q'=1. We say that the flip-flop is reset.

e S=0 and R=0: Assume the flip-flop was previously in set (5=1 and R=)
condition. Now changing S to 0 results Q sull at 0 and Q=1. Simlarly, when the
flip-flop was previously in a reset state (S=0 and R=1). the outputs do not change
Therefore, with inputs $=0 and R=0, the Nip-flop holds its state

e S=1 and R=1: This condition violates the fact that both outputs are complements
of each other since each of them tries to go (o 0. which 15 not a stable
configuration. It is impossible to predict which output will go to 1 and which will
stay at 0. In normal operation this condition must be avoided by making sure that
I's are not applied to both inputs simultancously, thus making it one of the man

disadvantages of RS flip-flop.

All the above conditions are summarized in the charactenstic table below

Churaciernte §able-

2 S O Q Comment
O (¢ Bold s

I . mdetermmaEs

Dwbcapmre corrms

As dementay ciampie smg s Hp-flop 5 @e debounce ciscmt. Sappose a
gusce of clectsoaics & W changs sate wmdeT e acten of 2 mechamical swich When this
swinch 5 moved from position S o R (5=0. R=I). = contxcss make and brzak several
Smes 2 R Beforz senfing @ good contacs. k 5 desiable hat e zlecmmecs should
respond 10 e i oonEact d Den remad ssablie. rather tham swinching Sack and ford 35
G caont mukes md breaks. Thes s acimeved 03 BS flop-flop which 5 =€l 10 Q=0 by
e first sopmal R=1 amd remaees 0 & fved stane smnid the swich v moved back o posinon
S, whes fhe gl S=1 sess the fip-flop w0 Q=1

Gazed or Clocied RS FEp-Flog

ihw-mﬂﬁemmxﬁlmmt%¢amgsmp—ﬂﬂp
Meﬁ)wgaenm:mxmmmmm&dtcm&
aiﬁacSaﬁéeamfnpmhB}a:mgal-im&\'[}gsemmwkﬁm
wM#ﬁﬁﬂWzG@ﬂS%@m&WMﬂm
mmbcﬁeﬁmfﬁh'mmﬁﬁwkgﬁtqf'ﬂ"ﬁmwn
e ih&mmﬁ'zahmd&wc.k\ngﬁmmu
hogsc level O -.&\D@W»m:ﬁ&md@mcmsm

m;mw&kmdﬂmm-mmmPuma@)he
Mmam&m@MMQMaﬂk@-&pm

it &5 somctismes calicd a "Clocked SR Fiip-flop”.

&zwdﬁﬁho@mszm&m&mm&
mzdj'mmdwﬁuak@'c‘l‘iszwiﬁmﬁﬁ“admmwa
bgi:'ﬂ"lkmaiﬁsmbs-nimds&mzﬁkm&
nﬁ:bg’cmdﬂepamwﬂd@,;hhdﬁzmmaﬂ&edmk
mmzmlhﬂmnus“m.

Circuit Diagram:

21 P h=a
EN/Clock [‘1———/r_;:1L_’/r Q
pulse ——« e
prom———, 1)] OI
S

Characteristic Table:

0. RS Qu
0 00 0(Hold)
oltlo] o
v() 0]' |

0 1 . l lndélcrmir;;zlc
100 1(Hod)
F10 0
ro1 1

.”1 .l 717'lndclcrminate

D FLIP-FLOP

An RS flipflop is rarely used in actual sequential logic because of its undefined
outputs for inputs R= 5= 1. It can be modified to form @ more useful circuit called D
flip-flop. where D stands for data. The D flip-flop has only a single data input D as
shown in the circuil diagram. That data input is connected to the S input of an RS
fhip-flop. while the inverse of I is connected to the R input. To allow the flip-flop 10

be in a holding state. @
input is AND-¢d with the D-input.

wWhen EN=H), irrespective of D-input. the R = § = 0 and the state is held.

D-flip flop has a second input called Enable, EN. The Enable-

o When EN= 1. the 5 input of the RS flip-flop equals the D input and R 1s the

imverse of 1. Hence. output Q follows D, when EN=1.
o When EN returns to 0. the most recent input D is ‘remembered’.

The circuit Gpesalion is summarized in the characteristic 1able for EN=1.

Circuit Diagram:

EN

Characteristic Table:

JK FLIP-FLOP:

The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented 10) 18
the most versatile flip-flop. and the most commonly used flip flop. Like the RS flip-flop,
it has two data inputs. J and K. and an EN/clock pulse input (CP). Note that in the
following circuit diagram NAND gates are used instead of NOR gates. It has no
undefined states, however. The fundamental difference of this device is the feedback paths
to the AND gates of the input, i.e. Qis AND-ed with K and CP and Q with J and CP.

Characteristic Table:

Qn —jT K ___Q!u_l___

Circuit Diagram:

7 s I
o= D+ B 1
, Q 0 110 |
ox ¥ 3 1 0 [T 1 [1(Topgle.Qn)|
; 1 [0]0 !
: } . L&} 3 0
ko— r—17. < T 0 T
S Mol (1 [t [oToppledy |

The JK flip-flop has the following characteristics:

* If one input (J or K) is at logic 0. and the other is at logs

LAe)
Ly

: '
thea the -
l. then the DuUIput Is et

- K.

or reset {by] and K respectively), just like the RS flip-flop.
e If both inputs are 0, then it remains in the same state 25 1L was before the clock
pulse occurred; again like the RS flip flop. CP has no effect on the outpul.

o If both inputs are high. however the flip-flop changes state whenever 2 clock
pulse occurs; i.e.. the clock pulse toggles the flip-flop agai n until the CP
goes back to 0 as shown in the shaded rows of the charactenstc table above.
Since this condition is undesirable. it should be eliminated by an improvised form
of this flip-flop as discussed in the next section.

MASTER-SLAVE JK FLIP-FLOP:

Although JK flip-flop is an improvement on the clocked SR flip-flop it still
suffers from timing problems called "race” if the output Q changes state before the uming
pulse of the clock input has time to go "OFF". so the uming pulse period (T) must be kept
as short as possible (high frequency). As this is sometimes not possible with modem TIL
[C’s the much improved Master-Slave J-K Flip-Flop was developed. This eliminates all
the timing problems by using two SR flip-flops connected together in series. one for the
“Master” circuit. which triggers on the leading edge of the clock pulse and the other. the
"§lave” circuit, which triggers on the falling edge of the clock pulse.

The master-slave JK flip flop consists of two flip flops arranged so that w hen the
clock pulse enables the first, or master, it disables the second. or slave. When the clock
changes state again (i.c., on its falling edge) the output of the master latch is transferred
1o the slave latch. Again, toggling is accomplished by the connection of the output with
the input AND gates.

Circuit Diagram:

Master latch Slave Latc

/

I 4 Q.'r q

0

o DD T

Characteristic Table:

| CP [J K |Qu Q, Qu @,
01100/ Hold | Hold
1=0/0[0 | Hold | Hold
o—1{o[1]0 [1 [Hold
1150 01| Hold |0 |1
0=1{1/0|1 0 | Hold
11=0 (10| Hold |1 |0
0—1 {11 Toggle | Hold
[1-0 (1 [1 [Hold [Toggle

T FLIP-FLOP:

The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is
obtained from the JK type if both inputs are tied together.

Circuit Diagram:
Same as Master-Slave JK flip-flop with J=K=1

¢ The toggle, or T, flip-flop is a bistable device, where the output of the T flip-flop
"toggles" with each clock pulse.

* Till CP=0, the output is in hold state (three input AND gate principle).

® When CP=I, for T=0, previous output is memorized by the circuit. When T=1 along
with the clock pulse, the output toggles from the previous value as given in the
characteristic table below.

Characteristic Table:

Qn T Qn+l
0 0 0
0 1 1
1 0 1
1 | 0

VHDL Code for an SR Latch

ibray Y | oo
use leae.atd loglc 1164.all:

entity axl is

port (r,stin bit; q,qbar:buffer bit);

end arl;

architecture virat of srl is

signal sl,rl:bit;
begin

g== o nand gbar;

gbar<= r nand q;
end virat;

Waveforms
)
R ;
Q o)
Q ?

VHDL Code for a D Latch

library ieee;
use leee.std loglc 1164.all;

entity D1 is

port (d:in bit; q,qbar:buffer bit);

end DI;

architecture virat of Dl is
gsignal sl,rl:bit;

begin
q< d nand gbar;
gbar< d nand q;

end virat;

Waveforms

Clk | | }
D ,
Q |

VHDL Code for an SR Flip Flop

LBt ary Lees
e feee.wtd logie Lied el

SRLILY sefiip ie

portin, A, clkiis ity Q. eeribelior Bal0s
end srflips

srohitecture wirst of safliip is
signal sl ,rhibins
begin
slces mand cliy
ric=t nand el
q<= sl nangd gdar;
ghar<s rl sand
end viraty

VHDL code for a JK Flip Flop

library IEEE;
gp p.m,mc_uu.m.

end

(]

end 1f;

q «
f“‘ Vd

e process

end virat;

s

rc

1

rr .
iy

1kif;

Waveforms
Far i 10 0 LR T e %
U Gne

iame ey Y ‘M s 1% 'm M s 1 A e) [Vi ma ¢
pa 140 [
b ' (FLSR . |
b | 0 B |
b cli [] | | |
MB ¢) i :
2 A ¢ R TS
VHDL Code for a D Flip Flop
Library ieee;
use icee.std_logic_1164.all:
entity dflip is

port(d,clk:in bit; q,qgbar:buffer bit);
end dflip;
architecture virat of dflip 1is

signal dl,d2:bit;
begin

dl<=d nand clk;

d2<=(not d) nand clk;

g<= dl nand gbar;

gbar<= d2 nand q;
end virat;
Waveforms
Ret |0 Ons ||0|o| Time |8152¢!s [Inter:al (815 2ns

0 Ons
Hame Value | 100 Ons 200 Ons 300 Ons 400 Crs
g

o-c
clk

a’ A
L Gbar

0

0
X
X

a

IR |
s

e —

8 | WIS gt

VHDL Code fora 1T Flip Flop

i »
i
< i
1
<
i
@
i1 L
be
L 4 t X N
varia 8 LA
pegin
1 f | ! "ne L
L] L
alalt IS A {
v {
{ ¥] ' ' 1
. 1
ena 11
end 11
aout - :
end procesas (11}
end virat;
Waveforms
et .l-“. im'-:“hu L)
LI
¥ SO T e pay L) -y (=N) LI -
e A i A A
e ' SR r——-—(\ v
b= 8 3 s | . .
‘b—l‘d v
[l !
o St | l
f |
. . i

Adveilimements

'
302019

VIEW Source 1 \
print?

1 library ieee;

2 use ieee. std_logic_1164.all;

3 use ieee. std_logic_arith.all;

4 use ieee. std_logic_unsigned.ali;
5

6 entity D_FF is

7 PORT(D,CLOCK: in std_logic;

8 Q: out std_logic);

9 end D_FF;

10

11 architecture behavioral of D_FF is
12 begin

13 process(CLOCK)

14 begin

15 if(CLOCK="1" and CLOCK'EVENT) then
16 Q <= D;

17 end if;

18 end process;

19 end behavioral;

moe fallanoutoaa comivhdi-code-flipflop-d-t-ik-sr/

VHDL Code for Flipflop -

DJK,SR,T

\'1

17

313012019
VICW SOuUree

print?
1 library icee; [
2 use feee. std_logic 1164.all;

3 use ieee. std_logic_arith.all;

4 use ieee, std_logic_unsigned.all;

5

6 entity SR_FF is

7 PORT(S,R,CLOCK: in std_logic;

8 Q, QBAR: out std logic);

9 end SR_FF;

10

11 Architecture behavioral of SR_FF is
12 begin

13 PROCESS (CLOCK) :
14 variable tmp: std_logic; AT
15 begin '

16 if(CLOCK="1" and CLOCK'EVENT) then
17 if(S='®"' and R="0"')then

18 tmp:=tmp;

19 elsif(S='1"' and R="1")then
20 tmp:='2";

21 elsif(S='0"' and R="1")then
22 tmp:='0";

23 else

24 tmp:='1";

25 end if;

26 end if;

27 Q <= tmp;

28 QBAR <= not tmp;

29 end PROCESS;

3@ end behavioral;

<

VHOL Code tor Flipllop - DK SR N
N %
|
\ {k Cf '
| ((' f t
Kelaled]
|
' J‘/ |" { !
! (e { i ;
| /
WA
"y \
‘\.
(
A iz) > \)
{
v \
.,). '’ '\‘ i
:\ N
S ’ ‘
v
"

nitps fallaboutfpga.comivhdi-code-fipflop-d -t jh-si/

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Form", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

