Multiplexer and Demultiplexer

A muitiplexer is a circurt that accept many input but give only cne cutput A demutiphear fnction suactly © Te reverse of 3

multiplexer. that is a demultiplexer accepts only cne input and gives many culputs Generaly muligierer arc temfiere
-1}

are used together, because of the communicaton systems are or drecton

Mutliplexer:

A

Multiplexer means many into one A multiplexer 1s a circut used {0 select and route any ore of me severa Tout 8

signal output. An simple examplie of an non electronic circut of 2 multiplexer $ a single pole MUTpoSton Swics

Multiposition switches are widely used in many electronics crcufs However crouts ™at ooerale 2 N0 50t Boare T
multiplexer to be automatically selected A mechanical switch cannot perform tnis tas« satsfzcioryy Thersfore —Ufoeses
used to perform high speed switching are constructed of electronic components

Multiplexer handle two type of data that is analcg and digtal For anzlog appicaton muftipiexsr are tut of reizys and
transistor switches For digital application. they are built from stancard icg ¢ gates

The multiplexer used for digital appiications aiso called digital mu'tiplexer s a crout w™h many mout Sut onYy ore CUioa
By applying control signals, we can steer any input to the output. Few types of mutiplexer are 2107 4-22-1 2237 78407
multiplexer

Following figure shows the general idea of 2 multiplexer with n input signal m control sigra’s 2nc one cutDut sig”

M control
lnes

L]

N Oustot sgna
Input ‘ MuUX
Signals

Multiplexer Pin Diagram

Understanding 4-to-1 Multiplexer:

The 4-to-1 multiplexer has 4 input bit. 2 control bits, and 1 output bit. The four mnput bits are DO D102 anc 03 orly cne of
this is transmitted to the output y The output depends cn the value of AB which is the control nput The comtra mpat
determines which of the input data bit is transmitted to the output

For instance, as shown in fig when AB = 00, the upper AND gate is enabled whie al cther AND gates are dsacec
Therefore, data bit DO is transmitted to the cutput. gving Y = Do

o1 L

J U U U

o3 @

4 to 1 Multiplexer Circuit Diagram ~ ElectronicsHub Org

If the control input is changed to AB =11, ail gates are disabled except the baottom AND gzte In s cane DO 4 ranarmSed
to the output and Y = D3

e An example of 4-to-1 multiplexer is IC 74153 in which the output is same 2as the input
e Another example of 4-to-1 multiplexer is 45352 in which the output is the compliment of the ingut

e Example of 16-to-1 line multiplexer is IC74150

Applications of Multiplexer:

Multiplexer are used in various fields where multipie data need tc be transmitted using 2 singie ine Folowmrg are sore of
the applications of multiplexers -

1 Communication system — Communication system 1$ a set of system that enacie commurnicalion L frarsmascn
system, relay and tributary station and communication retwork The efficency of communication Lyviem can oe
increased considerably using muitiplexer. Multipleser allow the process of transmiting tifferent typm of Ca'a Sun 3%
audio, video at the same lime using a single transmissicn line

2 Telephone network = In fols
the help of mulliplexars In this way multiple
reach the intended recipents

3 Computer memory - Mulliplexers are used 1o implement huge

reduces the number of copper ines required o connect the memory 1o other parts of the compuler cirguit

phone network, mulliple audio signals are integrated on a single line for transmission with

audio signals can be lsolated and eventually, the desire audio signals

amount of memory into the compuler, at the same lime

4 Tranamission from the computer system of a satellite - Multiplexer can be used for the transmission of data

mgnals from the computer system of a satellite or spacecraft 1o the ground system using the GPS (Global Postioning

Syslem) satelites

Demultiplexer:

Demultiplexer moans ona 1o many A domultiplexir 1s

we can steer any inpul to the oulpul Few types of demultiploxer are 110 2, 1-10-4. 1-10-8 and 1 10 16 demultiplexer

Following figure illustrate the general idea of a demultiplexer with 1 input signal, m control signals, and n output signals

M control

m

S
1 —
Input DE MUX
Signaly M Output
signal

Domultiplexer Pin Diagram

Understanding 1- to-4 Demultiplexer:

a crcuit with one input and many output By applying control signal,

The 1-1o-4 demultiplexer has 1 input bit, 2 control bit and 4 oulpul bits An example of 1-10-4 demultiplexer is IC 74155 The

1-to-4 demultiplexer is shown In figure below

Nata
"

"

1 to 4 Dempultiplexer Clrcult Diagram - Elactronicstub brg

The input bit i1s labelled as Data D This dala bit is lransmmilted 1o the data bit of the gt lees Tha danarsis 4o wa sx -

of AB. the control input

When AB = 01, the upper second AND gale is enahled whils othar AND) yates ara dsabied [raretys ooy dara 50 5«
transmitted to the oulput, giving Y1 = Dala

fDislow, Y1is low IF D is high Y1 is high The value of Y | dapernids uptr Ihe dalie td [L5 tArae oo py nim = o vinte

If the control input is changed to AB = 10, all the gates are disatiled srcapt the o F2I0 gate feope tom bes, Tras) =
transmitted only lo the Y2 output, and Y2 = Dala

Example of 1-10-16 demultiplexer i1s IC 74154 it has 1 input bt 4 contral hts are) 16 o fgns bA

B A T

Applications of Demultiplexer:

1

Demultiplexer is used to connect a single source to multiple destinations The main application area of demultiplexer
IS communication system where multiplexer are used Most of the communication system are bidirectional 1e they
function in both ways (transmitting and receiving signals) Hence, for most of the applications, the multiplexer and
demultiplexer work in sync Demultiplexer are also used for reconstruction of parallel data and ALU circuits
Communication System - Communication system use multiplexer to carry multiple data like audio, video and other
form of data using a single line for transmission This process make the transmission easier The demultiplexer
receive the output signals of the multiplexer and converts them back to the original form of the data at the receiving
end. The multiplexer and demultiplexer work together to carry out the process of transmission and reception of data in
communication system

ALU (Arithmetic Logic Unit) - In an ALU circuit, the output of ALU can be stored in multiple registers or storage units
with the help of demultiplexer The output of ALU is fed as the data input to the demultiplexer Each output of
demultiplexer is connected to multiple register which can be stored in the registers

Serial to parallel converter - A serial to parallel converter is used for reconstructing parallel data from incoming serial
data stream In this technique, senal data from the incoming serial data stream is given as data input to the
demultiplexer at the regular intervals. A counter is attach to the control input of the demultiplexer This counter directs
the data signal to the output of the demultiplexer where these data signals are stored When all data signals have been
stored, the output of the demultiplexer can be retrieved and read out in parallel

Source: http://www.electronicshub.org/rnuItiplexer-and-demuItiplexer/

Multiplexer Is a combinational circuit that has maximum of 2" data inputs, 'n’

selection lines and single output line. One of these data inputs will be connected o
the output based on the values of selection lines.

Since there are 'n' selection lines, there will be 2" possible combinations of zeros and

ones. So, each combination will select only one data input Multiplexer is also called
as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs I, I, |, & |,, two selection lines s. & s, and one
output Y. The block diagram of 4x1 Multiplexer is shown in the following figure.

Iy e 4xi

Iy —> Multiplexer

I1

51 50

One of these 4 inputs will be connected to the output based on the combination of
inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown
below.

Selection Lines Output
S, So Y
0 0 lo
0 1 I
1 0 I,
1 1 Iy

From Truth table, we can directly write the Boolean function for output, Y as
Y=S1-So-Jo+S1:Sol1+S1S0 > +S1S0/3Y=51'S0'10+S1'S011+5150'12+S51S013

We can implement this Boolean function using Inverters, AND gates & OR gate. The
circuit diagram of 4x1 multiplexer is shown in the following figure.

1y =——

Lopy

We can easily understand the operation of the above circuit. Similarly, you can
implement 8x1 Multiplexer and 16x1 multiplexer by following the same procedure.

Implementation of Higher-order Multiplexers.

Now, let us implement the following two higher-order Multiplexers using lower-order
Multiplexers.

« 8x1 Multiplexer
« 16x1 Multiplexer

8x1 Multiplexer

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1
Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and
one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one
output.

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs.
Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output.

Let the 8x1 Multiplexer has eight data inputs |, to ., three selection lines s, s & s0
and one output Y. The Truth table of 8x1 Multiplexer is shown below.

Selection Inputs Output
S; S, So 1
0 0 0 lg
0 0 1 I
0 1 0 I;

We can mplement Bx1 Multiplexer usng lower order Multiplerars easdy Oy
considenng the above Truth table The block diagram of 2 ® Mutgieeer @ soows

the following figure

lg =P 4x1

lg ——> Multiplexer

ly ——>
I — 2x1
— bl Multiplexer pr——p %
80 ——
: T
I3 ———p S2

I w——— 4x1

Iy —> Multiplexer

The same selection lines, s, & s, are applied to both 4x1 Mutplexers The cata
inputs of upper 4x1 Multiplexer are | to I, and the data inputs of lower a1
Multiplexer are |, to |.. Therefore, each 4x1 Multiplexer produces an oulput based on
the values of selection lines, s. & s

The outputs of first stage 4x1 Multiplexers are appled as inputs of 2x1 Multiplerer
that is present in second stage The other selection line, s, 's appied 1o 2u1
Multiplexer.

« Ifs.is zero, then the output of 2x1 Multiplexer wil be one of the 4 inputs |. to |
based on the values of selection lines s & s.

« If s.is one, then the output of 2x1 Muiltiplexer will be one of the 4 nputs | to L
based on the values of selection lines s & s

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multplever
performs as one 8x1 Multiplexer

16x1 Multiplexer

In this section, let us implement 16x1 Multiplexer using Bx1 Multiplexers and 2x1
Multiplexer. We know that 8x1 Multiplexer has 8 data inputs. 3 selection lines and

e PP R T T T T L —

one output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection ines and one
output

Sq. we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs
Since, each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in
second stage by considering the outputs of first stage as inputs and to produce the
final output

Let the 16x1 Multiplexer has sixteen data inputs |.. to |, four selection lines s, to s,
and one output Y. The Truth table of 16x1 Multiplexer is shown below

Selection Inputs Output

S, S, S, So Y
0 0 0 0 Iy
0 0 0 1 Iy
0 0 1 0 I
0 0 1 1 Iy
0 1 0 0 la
0 1 0 1 I
0 1 1 0 I
0 1 1 1 I
1 0 0 0 ly
1 0 0 1 ly
1 0 1 0 1o
1 0 1 1 14
1 1 0 0 Iy
1 1 0 1 lia
1 1 1 0 lia
1 1 1 1 1

We can implement 16x1 Multiplexer using lower order Multiplexers easily by
considering the above Truth table. The block diagram of 16x1 Multiplexer is shown

in the following figure.

LR

..
e b
e WA

[)
]

(W)
@

x

[

4
ba
¥

s it
-

lexer

[P
e
o

0

[

|

.4
s

A A A
> 2x1
Multiplexer

Sz_....‘.

S1

S92
vy Vv Y T

S3

-

8x1

Multiplexer

Tha same selection lines, S:, S & s, are applied to both 8x1 Multiplexers. The data
_to I. and the data inputs of lower 8x1

nouts of upper 8x1 Multiplexer are s
Mutiplexer are |- to . Therefore, each 8x1 Multiplexer produces an output based on

the values of selection lines, Sz, S: &s.

+s of first stage 8x1 Multiplexers aré applied as inputs of 2x1 Multiplexer

The output
snat is present in second stage. The other selection line, s, is applied to 2x1

Multiplexer
. Ifs. is zero. then the output of 2x1 Multiplexer will be one of the 8 inputs Is; to
| based on the vaiues of selection lines s., s & S.

. Ifs. is one, then the output of 2x1 Multiplexer will be oné of the 8 inputs |- 10 |s

rased on the values of selection lines s:, S &s,

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer

performs as one 16x1 Muitipiexer

(10 Mullqaluhl i i LAt ahiat @l carcun thist ;,a,u'.t.m..z e (G /s (gt ialicon ol
PAligianr W Bt Si04giG il 1Y Salaion Wnes g i of 2 Gutpts Ihe

'l
m;.-.l il it 0 AR i sk 4 NS serbd 100

fased on the values 7

TRTE
Lniids st alt 6 washer N sy fheste ol b 7 l,',:,::.i,h». ol ptiglions of zetos and
it S Bath okt Lt a6 YRV gt e HAuR plerel s

s Lis Wi

alsg called

124 De-Multiplezer

v

144 Vs Muitiplessi s NG it | s seleion ines. & & & and four outputs (

(., Bf, Ihe flook diagram o 174 e HAulbpie 261 15 shigwn in the 1oliowng figure

—
WA
o » 1
S N VTR LR LTS
e
----- » 1,
L3 LT

[it irighes inigadt "1 il b6 ofneoted 1 one of the four outputs, Y10 Y. based on the
sl of selection lines & sl The Truth tsble of 174 Lis Multiplexer s shown

Vokslts b
Salection Inpils Outputs
& 5, 1, Y; Y Ys
f) (y] () |
(1) f) | 0
] f) 0 | 0 0
1 1 |] () 0

§ geriv e abitass Tiuth fable e can disotly wite il Boolean functions for cach

oulgnil as
¥iosiaulv3=8180

Yoo sl 28180
sl 1=81'¢0)

Yoo s1su f10=81's0

d

~d l‘c"s\lﬂﬂ Time 735 27 | Intenal [260 305 I
‘iame Vaie | 100 Ors 200 Ons 300 Ons 400 Ons 500 0r
i a3 T % 7 | r l

al X
= a1 X
= a(‘ot B
P D odd X e el |
% p_ran b T a___—}ﬁ
L |

\1"_\:19 can irr}ple_ment these Boolean functions using Inverters & 3-input AND gates.
€ circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

2 I T e
>—-
>—-
—-

We can easlly understand the operation of the above circuit. Similarly, you can
implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same
procedure.

Implementation of Higher-order De-Multiplexers

Now, let us implement the following two higher-order De-Multiplexers using lower-
order De-Multiplexers.

« 1x8 De-Multiplexer
« 1x16 De-Multiplexer

1x8 De-Multiplexer

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and
1x2 De-Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection
lines and four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection

lines and eight outputs.

So. we require two 1x4 De-Multiplexers in second stage in order to get the final
eight outputs. Since, the number of inputs in second stage is two, we require 1x2
DeMultiplexer in first stage so that the outputs of first stage will be the inputs of
second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x8 De-

Multiplexer.

Let the 1x8 De-Multiplexer has one input |, three selection lines s:, s. & s: and
outputs Y- to Y.. The Truth table of 1x8 De-Multiplexer is shown below.

Selection Inputs Outpits

S; S S, Y f: Ys Ys {; 4 fs
0 0) 0) 0) o g 0 I
O U 1 o) o iy 9 i | 3
i 1 0 0) 0 o g J o)
c 1 1 0 0 0 g I 0 Y s
1 o 0 o 0 0 I s o i’ y
1 0 1 0 0 I 6o 0 0 0 O
1 1] 0 | O 0 O O))
1 1 1 I) O 0 O O o g

using lower order Multiplerers easily by

i
e block diagram of 142 De Mutipleser s

Viie can imgplement 12 De-Muitiph
considerning the above Truth table

hown in the following figure

ese
Th

1% 4

| Ca-MMutipg arar

N

b 4
x 2 1 c———
I — : 51
De-Multipgiexar $0
A y
T l—— v;
1~4

Y

Ca-tMuticiarar

Tre common selection lines, 8. & 8, are applied to both 174 Dedhultiplesers. The
outputs of upper 124 De-Multiplerer are Y. 10 Y. and the outputs of lower 144 De-
Multiplexer are Y. 10 Y.

Tre otrer selection line, 8, 15 appled o 142 DeMuitipieser. If 5. 18 zero, then one of
e four outouts of lower 124 De-Multiplerer will be equal to input, | based on the
salues of selection lines 5. 4 s. Similarly, if 5, 18 one, then one of the four outputs of
spper x4 DeMutiplerer will be equal to input | nased on the values of selechon

ines s 4 3.

1x1€ De-Multiplaxer

In s sechon Bt us rrplernent 1116 De Mutpeser g T8 De L b
1512 De Mutpieser We know 3t "1 De Mg "an wge ront Pres
selector et and eght oD Viherean t 518 D MM SCwesr “a% e PonS
oy selechon nes 3nd wrieer GUADUM

So nrMM$derwmmrmtrn'r.
sodeen oulpuls Since The number of FpUlS M SECONS SOE & teo we wgoe 15
Mwn&umwwtmwﬁd'wm-ﬂua roum o
second siage de’flfkmwﬂmm:wﬂ rout of 10'E Cm
M Rpwe xe’

Let he 11718 De-Mulipiener nas One N | s semcior res s & 3 B a0
outputs Y, .10 Y T&mxmd'.femwwmmﬂ
M Rpiexers s shown n the followng fgure

———— -
e ¥ &
premnmn=ll V33
e
¥

i =8
™ Ce-*Mut o eser

e)

., —
s i1 x 2 .

Ce-Mutpeser s
T i h—— Y
e Y&

* ——e v.
Ane p— .
N1 Ce-Muliplees’ b ¥ 5
e v,
}—e .

memmum&amwnmmm Tes
wawwitsﬂtmwmv.mv.mnwdb‘ld

DeMuttipleser are ¥ 10 Y.
rmmmm.mswnmo’w ¥ s s 2000 hen one of

mmmammwuumnm,rmmu
values of selection lnes s § & 5. Sundarty f 53 s one then one of e 8 outputs of

"
% v,o.“l.ls
(|

" |

b5

i3 -
v

_v

IS‘.

SETeCI LiEE INpUTS

&.

VHDL Code for a Multiplexer

Library ieee;
se leee.std logic 1164.all;
entity mux is
port (S1,80,D0,D1,D2,D3:in bit; Y:out bit);
end mux;

‘a4
<
®

data of mux 1is

Y<= (not SO0 and not S1 and D0) or
and not S1 and Dl) or
(not S0 and S1 and D2) or

<A S
1 and D3);

[
2
o

'.
o
:
:
1
:
;

. e . Nl

. -

. 2 X [

o - WJ
- e | |

VHDL Code for a Demultiplexer

LLibrarv 1eee:
Library ieee;
gse ieee.std logic 1164.all;

D:in bit; YO,YLl,¥2,Y3:out bit);

et 10 Ora el o~ w . dwive (W s i

. s 18 o 00 L VL O

Lyl
,

SR &L MUY A

YISW SOWRY

pont.

1 library IESE

2 use IEEE.STO_LOGIC _1164.all; 2

4 eotity mux_4tol is

3 pert(

€

7 A,B,C,D : inm STD_LOGIC;

s S8,51: im STD_LOGIC; '
S Z: out STO_LOGIC

1@);

11 end mux_4tol;
12

13 architecture bhw of mux_4tol is

12 begin
15 process (A,B,C,D,58,51) is
16 begin
17 if(S@ ='@' and S1 = '2") then
18 2 <= A;
19 elsif (S@ ='1"andS1 = ‘") then
20 Z <= B; ‘
21 elsif (S@ ='8'andS1 = '1°) then e !
2 Z <= v |
23 else ’e ; 1
24 Z<=0D; ? e 3 .
25 endif; P o 2w
26 s
' &
27 end process; P “_":i \
28 end bhv; —) X L -

-

3/30/2019

VICW source

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.311;

3

4 entity demux_1to4 is
5 port(
6

I F : dn STD_LOGIC;

8 $0,51: in STD_LOGIC;

9 A,B,C,D: but STD_LOGIC
18);

11 end demux_1to4;
12

13 architecture bhv of demux_1to4 is

14 begin

15 process (E5S0,51) s
16 begin

17
18 A <= F;

19 elsif (50 ='1' and 51
201 B <= F;

1}

21 elsif (S8 ='0' and S1
22 C <= F;

23 else

24 D <= F;

[}

25 end if;

26

27 end process;
28 end bhy;

hitps.//allaboutfpga.com/vadi-code-for-1 ~to-4-demux/

if (S8 ='9' ands1 = '@') then

'9') then

'1') then

VHDL code for 1 to 4 Demux ’

-—

P) }) Col ‘ ! q
'
| B
RS F \ f
i \ £ ‘ \
i e)\
) 1 U
,‘J ’ : r \ \
\ - '
« | \ }
| f | \ J
¥ \ T f
\ { L
‘ r

7

- TR ST RGN Lee A

-y . e

AALD BT K.
WS S
2 een SW_aEK

P P R

sl A8 3 ST N
5 3 SW B

LN

I s

pint?

Dibrary 1hie;

Us€ TEEE.STD LOGIC 1164, 411 ;

Cnvity mugl 1 gs
PtOA, B in 510 1061C;
SEANSI0 106K

21 oaut S10_1L0GIC),
end g 1;

architecture Behayioral of mis2 1 js
biegin

process (A,8,5) is
begin

(5 ='@") then
s A

Else

Z s B

end if;

end process

ond behavioral

VHDL Code of 4:1 Mux using Different Modeling Styles :

flal fAal O
¢ 3
INVY INV
fel bar 1 — ALY
\ \"{ \‘l{ el bar 0
A el = /

pop o —— T,

Loge dingram

-= Behavioral Modeling of 4:1 mux
library icee,

use leee.std logic 1164.all;

entity MUX4 1 is

port (Sel : in std logic vector(l downto 0);
A, B, C, D : in std_logic;

Y : out std_logic);

end MUX4 1,

architecture behavior of MUX4 1 is
begin

process (Sel, A, B, C, D)

begin

if (Sel = "00") then

Y<= A,

elsif (Sel = "01") then

Y<= B,

elsif (Sel = "10") then

Y<=C,

else

Y<= D;

end if;

end process;

end behavior;

== Structural modeling of 4:1 mux
library icee:

use ieee.std 1ogic 11od.all;

entity MUX4 1 is

port (Seld,Sell :in std logic;

A, B, C D:instd logic;

Y : out std logic);

end MUX4 1;

architecture structural of MUX4 1 s
component inv

port (pin : in std_logic;

pout :out std logic);

end component;

component and3

port (a0,al,a2: in std logic;

aout:out std_logic);

end component;

component or4

port (r0,r1,r2,r3:in std _logic;

rout:out std_logic),;

end component;

signal selbar0,selbar1,t1,t2,t3,t4: std_logic;
begin

INVO: inv port map (Sel0, selbarl);
INV1: inv port map (Sell, selbarl);

Al: and3 port map (A, selbar0, selbarl, t1);
A2: and3 port map (B, Sel0, selbarl, t2);
A3: and3 port map (C, selbar0, Sell, t2);
A4: and3 port map (D, Sel0, Sell, t4);
O1: or4 port map (t1, t2, t3, t4, Y);
end structural,;

-- Dataflow modeling of 4:1 mux
architecture datafiow of MiUrs 1 is
signal seibar0,selbar1 t1,82,43,14: std log
begin

selber0<=not sel0;

selbarl<=not sell;

tl<=A and selbar0 and sebarl,

t2<=B and s¢l0 and se¢lbarl;

t3<=C and selbar0 and sell;

t4<=D and sel0 and sell;

Y<=tlort2ort3ort4;

end dataflow;

-

Code for 16x1 mux

Library ieee,
use ieee std_logic 1164 all;
use ieee.std_logic anth.all;

entity kanhe _16x1mux is

port(ain std_logic_vector(15 downto 0);
s:in std logic_vector(3 downto 0);
Zout std_logic);

End kanhe_16x1mux;

Architecture kanhe_16x1mux1 of kanhe 16x1mux is
signal z1,z2,z3,z4 std_logic;

component kanhe_4x1mux is
port(a,b,c,d,s0,s1:in std logic;
Q out std_logic);

End component;

Begin

M1: kanhe_4x1mux port map(a(0).a(1),a(2),a(3),s(0),s(1),z1);

m2: kanhe_4x1mux port map(a(4),a(5),a(6),a(7),s(0),s(1). 220;
m3. kanhe_4x1mux port map(a(8),a(9),a(10),a(11),s(0),s(1),z3);
m4: kanhe_4xTmux port map(a(12),a(13),a(14),a(1 5),5(0),s(1),z4);
mS: kanhe_4x1mux port map(z1,z2,23,z4,s(2),s(3),2);

End kanhe 16x1mux1;

vhdl code for 16:1 mux using 8:1 :

library IEEE;

entity mux | 6using8 is
port(d:in bit_vector(15 downto 0);
s:in bit_vector(3 downto 0);
e:in bit;
y:out bit);
end mux 16usings,

architecture Behavioral of mux16using8 is

component mux8 is
port(d:in bit_vector(7 downto 0);
¢:in bit;
s:in bit_vector(2 downto 0);
y:out bit);
end component;
component mux2 is
port (d:in bit_vector(1 downto 0);
e,s:in bit;
y:out bit);
end component;
signal m:bit_vector(1 downto 0);
begin
m1:mux8 port map(d(7 downto 0),e,s(2 downto 0),m(0));
m2:mux8 port map(d(15 downto 8),e,5(2 downto 0),m(1));

m3:mux2 port map(m,e,s(3),y);
end Behavioral;

Multiplexer using case when

LIBRARY [LLE;
USE IEEE.STD LOCGIC 11¢4.ALL;

ENTITY MiXE 1 1§
'PORT (A:IN 11 el VWl (DONWNT):

BIIN &70_LOGt_ DOWNTO)
C:IN ST0_LoGLl._VeLluk(DOWNTO)
D:IN STD LOGIC VECTY DOWNTO)/
EIN 77D I°37T° VE"TOFE(DOWNTO)
FeIN OU0 LOGLES VRO (DOWNTO)
G:IN " LUGIC Ve ton(DOWNTO)¢
SEL: IR aTh 1.0G1 o (. DOWNTO) bour

END MUXE 17

ARCHITECTURE RFH1/13 OF MIXU 1 IS

BEGIN

‘PROCESS (A,B,C,D,E,F,G,8FL)
BEGIN

ICASE SEL 1S

WHEN * =DLOUTC=A;
WHEN ' =>DOUTE=A ;
WHEN " CPIReIE < Ta
WHEN' .. '=>DOUT<=D;
WHEN . "=>DOUT<=E;
WHEN . . =>DOUT<=F;
WHEN " =>»DOUTC=G
WHEN OTHERS=>[OUI<=A;
END CASK:

END PROCESS:
END BEH123;

vhdl code for 16:1 mux using 4:1 .

Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity kanhe_4x1mux is
port(a,b,c,d : in std_logic;
S0,s1 :in std_logic;

q : out std_logic);

end kanhe_4x1mux;

Architecture kanhe _4x1mux1 of kanhe_4x1mux is

Begin
Process(a,b,c,d,s0,s1)
Begin

If sO ='0"and s1 ='0"then q <= a;
Elsif sO ='1"and s1 ='0' then q <= b;
elsif sO ='0" and s1="1"then q <= c;
else q <=d;

end if;

End process;

End kanhe_4x1mux1;

1 OuUT

1

DOWNTO

V)

