oA

Assignment 2

iz chaptetr explains the VHDL programming for Combunational Crrouits

Myective
o) 1o conatruct halt and full adder circuit and verity its working
o To construct halt and full subtractor circuit and venfy its warking
() 1o construct a full adder subtractor circuit

Malf adder:

wgle bits together
that s to hirst
t the followng

Lets start wih a hall (single-bit) adder where you need to add sir
and get the answer The way vou woulkd start desianing a circuit for
ok at all of the logieal combinations You might do that by looking a

,i\ﬁ [SUMS

¥y % T 3
+0+1+0+1
8 ¥ 1%

Ihat looks fine until you get to 1 + 1 In that case. you have a carry bit to worry
aboutl It vou don't care about carryng (because this 15 after all a 1-bit aaditen
probiem) then you can see that you can soive this probiem with an XOR gate But
vou do care. then you might rewrite your equations 1o always include 2 bits of output
ke thir

3 .0 1%
+0+1+0+1
Q0 01 01 10

NOow you can form the logie table

1-bit Adder with Cany-Qut

A B8 SUM CARRY
Q Q Q 0
Q 1 1 Q
1 Q 1 Q
i | 0 1 3

Sy ipokng at this table you can see that you can implement the sum Q with an XOR
gate and C (camy-oud) with an AND gate

»

r-——-u-—-————.-i.-—_‘ -— —
—— —— — —

C
|
]
__________________ |
Fig. 1: Schematics for half adder circuit
VHDL Code for a Half-Adder
VHDL Code:
Library ieee;
use ieee.std_logic_1164.all;
entity half adder is
port(a,b:in bit; sum,carry:out bit}) s
end half_adder;
architecture data of half_ adder is
begin
sum<= a xor b;
carry <= a and b;
end data;
Waveforms
Ref |0O0ns | l#]l=] Twne [4810ns | Interval |44
0 Ons
Nasuel Value 100 Ons 200 Ons 300 Ons 400 Ons 500
B 14 o Tt r l I I
E:A 0 . T
Lew SUM 0 J' |
g » CARY 0 l I

- f
‘q L"#.;'T [,,"“""tl, (K”LL, {H L,Lluk\n C"L'\-’\ﬁ-/{_ MO/_

r—

Full adder:

If you want to add two or more bits together it becomes slightly harder. In this case,
we need to create a full adder circuits. The difference between a full adder and a half
adder we looked at is that a full adder accepts inputs A and B plus a carry-in (CN-1)
giving outputs Q and CN. Once we have a full adder, then we can string eight of
them together to create a byte-wide adder and cascade the carry bit from one adder
to the next. The logic table for a full adder is slightly more complicated than the
tables we have used before, because now we have 3 input bits. The truth table and
the circuit diagram for a full-adder is shown in Fig. 2. If you look at the Q bit, it is 1 if
an odd number of the three inputs is one, i.e., Q is the XOR of the three inputs. The
full adder can be realized as shown below. Notice that the full adder can be
constructed from two half adders and an OR gate.

One-bit Full Adder with Carry-In & Carry-Out

INPUTS OUTPUT
A B C-IN C-OUT S
¢ 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

VHDL Code for a Full Adder

Library ieee;
jeee.std logic_1164.all;

use

entity full adder is portia,b,c:in pit;
end full adder;

architecture data of full adder 1s

pegin
sum<= a x%or b xor C;
carry <= ((a and b) or (b and c) or

end data;

s X I &xﬁii.fbﬂj e o
Waveforms '

sum, carry:out bit);

(a and c));

'/uf—q ,}[_,{ C‘z/\/\j .

."1. -
~r - ~X fes wr ..

S————

Tag: Half Subtractor and Full Subtractor PDF

Full Subtractor | Definition | Circuit Diagram | Truth Table

& Digital Design

Half Subtractor-

Before you go through this article, make sure that you have gone through the previous article on Half

Subtractor

We have discussed-
+ Half Subtractor is used for the purpose of subtracting two single bit numbers.
« Half subtractors have no scope of taking into account “Borrow-in" from the previous circuit.

« To overcome this drawback, full subtractor comes into play.

— P» D (Difference)
Half Subtractor

| — » 1 (Borrow)

In this article, we will discuss about Full Subtractor.

Full Subtractor-

Full Subtractor is a combinational logic circuit.

It is used for the purpose of subtracting two single bit numbers.

It also takes into consideration borrow of the lower significant stage.

Thus, full subtractor has the ability to perform the subtraction of three bits.

Full subtractor contains 3 inputs and 2 outputs (Difference and Borrow) as shown-

e——— e [(D T2 160100
Full Subtractor

]

ﬁ'i 48

Half Subtractor | Definition | Circuit Diagram | Truth Table
& Digitz! Design

Half Subtractor-

+ Half Subtractor 1s a combinational logic circuit
» It s used for the purpose of subtracting two single bit numbers

* It contains 2 inputs and 2 outputs (difference and borrow)

f — e © T TarEn
Half Subtractor

Half Subtractor Designing-

Half subtractor is designed in the following steps-

Step-01:

Identify the input and output variables-

+ Input variables = A, B (either O or 1)

« Output variables = D, b where D = Difference and b = borrow

Step-02:

Draw the truth 1able-

Inputs Outputs

D
B b (Borrow
A (Difference) ()

0 0 0 0

lruth Table

Step 03

(RITVRE g sl it aabptges okl Viakyles canid) desiashoniidids hins S0t idiand] isptpe

For D: For b

:’ 4 : 3 \

D=A@B

K Maps

Also Read- Half Adder

Step-04;

Liriaw the logic diagram

The implementation of half subtractor using 1 XOR gate, 1 NOT gate and 1 AND gate is as shown
below-

T\

1]
T>|
W

Half Subtractor Logic Diagram

Limitation of Half Subtractor-

« Half subtractors do not take into account “Borrow-in" from the previous circuit.
« This is a major drawback of half subtractors.

« This is because real time scenarios involve subtracting the multiple number of bits which can not
be accomplished using half subtractors.

To overcome this drawback, Full Subtractor comes into play.

To gain better understanding about Half Subtractor,
Wiitoh this Vided bectare
7[2 | [3 ["‘ht’l (e](/ bedaon rom <) n“”u//.

Designing a Full Subtractor-

Full subtractor 15 designed in the following steps-

Step-01;

Identfy the input and output variables-

* Input variahles = A, B, By, (either 0 or 1)

* Output variables = D, By, where D = Difference and By, = Borrow

Step-02;

Draw the truth table-

Inputs Outputs
A B Bin Bout D (Difference)
(Borrow)
0 0 0 0 , 0
0 0 d i it
0 1 0 it il
0 1 i 1 0
1 0 0 0 1
1 0 1l 0 0
il 1 0 0 0

{yraw the ogie diagnm

Fhe implemesraation of full adedeg using 1 XON gate 3 AND gates | NOIT
(1 ANL) gates, | N ‘

shown helow

S O W
/T)

.

S
(
J/

Pull Subtractior Logic Diagrar

fe5 dpmiei bassttans Linithenst Gatiefirarg gabpegipd 1 otl Soobibesas desy

Yty this ey Lo tine

flept foavio de dogple Cner g feddar

PR Yy R IY) BV T T I I A TR LT ol fpragangsl Hpe caegey

Sluli B iy b i byt by da i PR T TR TR T | T

VHDL Code for a Half-Subtractor

Library leee;
use ieee.std logic ll64.all;

entity half sub 18
porti{a;ctin bit; d,birout bit)’
end halt sub;

architecture data of half sub i
begin

d»' a4 Xor C}

b<= (a and (not ¢));
end data;

Waveforms
[Ret [3C2 Cns RIS Time [51G0s] intens 193003 o BN
9420 |
Nome Value 100 Ons 200 0ns 30 0rs W0oens |
4 e | | |
- C 0 | | | !
ma S —
-y 4 l 1 e
. O ¢ | [|]
[
VHDL Code for a Full Subtractor
Library leee;
use ieee.std logic_ll64.all;
entity full sub is
port (a,b,c:in bit; sub,borrow:out bit);
end full_sub;
architecture data of full sub is
begin
sub<= a xor b xor ¢;
borrow <= ((b xor ¢) and (not a)) or (b and c¢);
end data;
Waveforms
- il 4 - Elg — s -]
F— > (Y v 1 : 4 i fom " ~ N ..‘-.‘
o0 , vl
' y i |
¢ :]
¢ |
’ ¥ B - l L . =T WS g .
p— |

VIO SRR

!
Ty Al
library teee
waw beew ald logie Len el
enlily tull ams e
pOrYy K, Y, (in TRy W
i, oul el ala lugion

eid rull Addgr

archiiel o By ar Publ Adder aa
Login
IR TR IS T T B B R
Cout Bamp it s (N and (Y @i LIRDD G0 (W AR e v

wind iy,

A4 LA Adaet Subbea L
Liboary Lleee,
vae Leee sbd degiy Liad al)
el ity addasul s
party W in atd dagis
Ad TR L R 10T T T W N TR A
" G b Lpg e e B b sl @)
Voul, OVERY L O vl st lugia b,

e addanb

architecture slivn b ur addeyl s
Compungnt rall Adder e
Parte Ao N, Gl o anebd degdy
suim, A apd wil el Lugie),
O ampanend
ll‘lu“\h (4, Ld, (4 b gl

slgnal TRED sl lugli vecuogd Aok oy,

biegin

IME B A wn By

FABFWLl Addar par b mapi AL, TREY A RLBY n
FAL Fyd) Adider part mapy ALY PRECEY VL B b LYl
FAZ Fubl Addur pacy mapiagd) TREGEY L2, Bid) k) ni
PAS bubl Adder po b mapiA() IREQIL U, Ry) L1
OVERFLON BHL, = L4 AR A

Capl BiEs 1A,

wod wbini by

' l \ \‘] s ’*‘ ! 4
‘] »
b 0
l 1. '
\ '
| .
| ' (
{ \ ; § - 1 \
. [» - " !)
(¥
\0‘ "‘ 1-' ,‘,“,
‘:1,.,] o .
Wt | LT Leg ! W44 M

| ¢ il
1O (1o ..!
Uge)
B, o - e
W 7 \ crh loa T ¢!
L} A » ’ /
q-'{\# (t. !:”)- 1Al ’ | 4"
::17 ! Cap, A0
A w1
2 b 31O 10
A &
. . k ’\“‘ "'.‘r“r
(ok .
enk M. att) I WP
L .,_,:awv"
arvehirtehms A
- hp i
e A
Cﬂ""v‘ \ rp .’).-(

o
Tect C at aen.” WA
kY W™

¢, el

‘!Ll-. ('.*‘ crr’ ! .’I’
0. Lom

t ha ok /

o
-d...) e /

it |

5'4,,\.1 £. 8, el, on ! . rr'(}

qu]&li' Ig. pekeap CA,\, 4, ¢)/'
Mﬁ-;_‘. ha P""‘"’“‘P (Lf,u-.l fb,(‘)

2) I»A-Q‘H w (A —

Full Adder using two Half Adders

A A S 51 A
HA HA
B[B C ’ B J 2
o
CInD ' : :
€1)/
library IEEE;

use IEEE.STD LOGIC 1164 ALL;
use IEEE.STD LOGIC ARITHALL;
use IEEE.STD LOGIC UNSIGNED ALL;

.- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

—library UNISIM,

—use UNISIM.VComponents all;

entity full_add is
Port (a:in STD_LOGIC,
b:in STD LOGIC,
cin :in STD_LOGIC,
sum : out STD_LOGIC;
cout - out STD_LOGIC);
end full_add,

architecture Behavioral of full_add is
component ha is

Port (a:in STD_LOGIC;

b:in STD_LOGIC,

sha : out STD_LOGIC;

cha : out STD_LOGIC),
end component;
signal s_s,c1,c2: STD_LOGIC |
begin
HA1: ha port map(a,b,s_s.c1);
HAZ2 ha port map (s_s,cin,sum,c2),
cout<=c1 orc2

end Behavioral,

=%

Parallel Adder / Subtractor

ubtraction can be performed by a one

e

n

The operations of both addition and
commeon binany adder. Such binary circuit can be designed by adding an Fx-OR
der as shown in below figure. The figure below shows the
= 'y
~

1 ~
- “
1 bit parallel binary adder subtractor which has two 4 bit inputs as A3 A2A1A0

R ald

ut control line M is connected with carry input of the least
mier

of the full adder. This control line decides the type of ope! ation.

Ba B:
|

an
As __L_L Az -LL Al

e

Cm | Fun |o= ©=| Fur o= O] Fun S Cm] Fur o=
€ Adcer [A F——Am""——"‘mw"“

i

Ss S- S1

When M= 1. the circuit is a subtractor and when M=0. the circuit becomes
adder. The Ex-OR gate consists of two inputs to which one is connected to the
B and other to input M. When M = 0. B Ex-OR of 0 produce B. Then full
adders add the B with A with carry input zero and hence an addition operation
is performad

When M = 1. B Ex-OR of 0 produce B complement and also carry input is 1.
Hence the complemented B inputs are added to A and 1 is added through the

2al

input carry. nothing but a 2’s complement operation. Therefore, the subtraction

D s e

operation is performed.

4. Parallel Adders

e

f b X

i [LETEEN IR IR,

‘#.’ “

£

Fig Y Paraliel Addder

Paraliel adoery are dEAs (f s Ihe (ormgate The BOORe of caritie By g of eguavasient
ot different size i paraliel The schomatu dagram of » g slied sBBier o Waorme Bt = By §

Figuro 4 Faraliel Aoses 4 et rippie Carry AcOew theaos ey e=

4.1 Bipple Carry adder

The rippie carry adder is constructed by cascading full adders (FA) blocks m serwes. Ome Sl adiier &
responsible for the addition of two banary degits 2t any stage of the npple carmy The Carmpt of ane
stage is fed directly 10 the carry-in of the nest stage A number of full adfen: may be adied Mo
the ripple carry adder or npple carry adders of different wes may be Ccadied @ oaler &5
asccommodate binary vector strings of larger sues. For an n bt paralied adider. B segures o
computational elements (FA) Hgure & shows an exampie of 5 parsliel adider » & D8 rggie Carvy
adder 1t i composed of four Tull adders The augend s bits 0f » ave adiied 10 e adidieond Bais of 4
respectiully of their binsry position [ach bit sddton Creates & s and & Ciory ol Thie Carry ot &
then transmitted (o the carry in of the nest bugher ordier e The Gl realll Oreptes & sam of Ragy
bits plus a carry out (c4) Even though thes 1 & senple adder and can bt ced 10 adild sspestnaied e
length numbers, it is however not very efficsent when large bt numien are wed Omie of he o
serinus drawbacks of this adder 13 that the deloy moreases meary @ith T B engt™ Ry e digmed
betore, pach full adder has 1o wait 101 the Carry 0ut 0f the previows 1age 1o Output sheady Slate
result. Therefore even i the adder has a value 31 15 Oatpat termmal & ban 10 wakt for W
propagation of the Carry betore the 0utput teaches 8 Come value o thoms o Gig 5 Tang agae
the example in figure 4. the addition of o8& and yd (el teach sleady tlate bl (8 B mes
available In turn, o4 has 10 wait for €3, and 50 on Gown 10 (L

VHDL code for n-bit adder

- function of adder:

== A plus B to get n-bit sum and 1 bit carry

== We may use generic statement to set the parameter
== n of the adder.

Library icee;

Use icee.std logic 1164.all;
Use ieee.std logic arith.all;
Use iceestd logic_unsigned.all:

entity ADDER is

generic(n: natural :=2):

port(A: instd logic vector(n-1 downto 0):
B: in std_logic_vector(n-1 downto 0);
carry: outstd logic:
sum: out std logic vector(n-1 downto 0)

1)

end ADDER:

Architecture behv of ADDER is
-- define a temp arary signal to store the result
signal result: std_logic vector(n downto 0):

begin
-- the 3rd bit should be carry

result<=('0' & A) + ('0' & B):
sum<= result(n-1 downto 0);
carry<= result(n):

endbehv:

Parallel Adder / Subtractor

The operations of both addition and subtraction can be performed by a onc
common binary adder. Such binary circuit can be designed by adding an Ex-OR
gate with each full adder as shown in below figure. The figure below shows the

4 bit parallel binary adder/subtractor which has two 4 bit inputs as A3AZATAO
and B3B2B1BO.

The mode input control line M is connected with carry input of the least
significant bit of the full adder. This control line decides the type of operation,
whether addition or subtraction.

B Bo
l M
Ao

|
FU" Ci.n Cout Fu" Cin
Adder [Adder [¢

¢ 1

Sa S: S1 So

Al

Cout

When M= 1, the circuit is a subtractor and when M=0, the circuit becomes
adder. The Ex-OR gate consists of two inputs to which one is connected to the
B and other to input M. When M = 0, B Ex-OR of 0 produce B. Then full
adders add the B with A with carry input zero and hence an addition operation
is performed.

When M = 1, B Ex-OR of 0 produce B complement and also carry input is 1.
Hence the complemented B inputs are added to A and 1 is added through the
input carry, nothing but a 2’s complement operation. Therefore, the subtraction
operation is performed.

x| i b UL S e et e i e

e,
/' /
> o/
VIEW sOuUrcs » 4 =
3
e A
print” '3 3 on
< PULL ADUGER % ///
s .
Lbrary leece, v ///

use Jeee, std logie 1164 511,
entity tull Adder 1%
port(%, ¥, Cin ! instd _logic;
sum, Cout | out std logic),;

end full Adder,

architecture bhy of tull fdder 1s
begin
sum & 1L, (£ orY) sor Cin;
Cout Bamp;lt;s (X and (¥ or Cin)) or (Cin and ¥y,

end bhy;

<-4 bit Adder Subtractor

library lece;

use feee,std logic 1164.al1;

entity addsub 1%

port(OP: instd Jogic;

A8 instd logic vector(downto b))
Ro: oout std logic vector(y downto4);
Cout, OVERFLOW ; ogut std logic);

end addsub;

architecture struct of addsub 14
component Full Adder is
port(X, ¥, Cin : instd logic;
sum, Cout : out std logic,;
end component
signal €1, €2, €3, CA: std _logic;

signal TMP: std_logic vector(3 downto®);

hegin

TP <= A xar B;

FAg:Full Adder port map(A(G),1MP(6),0P, #(9),C1);-- RO
FAL:Full Adder port map(A(1),TMP(1),01, R(1),C2);-- K1
fA2:Full Adder port map(A(2),1MP(2),02, R(2),£3);-- R2
Fas:Full Adder port map(A(3),TMP(3),C3, B(3),04);-- K3

.

v s ? Sy

&
1

‘-1.~‘-.-}‘ Pzl
! 1 4

»

W23 Deagm

Ripple Carry Adder-

Carry Look Ahead Adder | 4-bit Carry Look Ahead Add

D

i it rewrrender i
..... 'z - we oy a ¥
n Rk Carry Adddar
UiPDe Laimy AO0E
e manb & ~ e s é > - - - -
Caln W agoer Nas 10 wal or S Camy * e S e a0
- - . - - - - - - - - - - P — - -
* IS LS aC0er Nas 0 wal u & i) RN S00ers Nane C CREREC e e &
h Sk o el o el o .
- uS CAUSES a OBy and Makes nppee Camy aloer exemety SIOw
T = mem e e = - - — —— - - - = - - =~ — = -
¢ inNe Siuahon DEeCOMES WOrst wine e Value 0 DE0OmEs very &rge
- ~
s e SR B e s | sl Blaescsd Bl e b o
* 10 overcome Ues OsSsadvaniage. Larmy LOox ANeal ~00er COmes O O6a
» - " - " -

1

” - | Full Adder C: Fuil Acger i .
D c z

1 l 1

Sz S2 S

4-bit Ripple Carry Accer

IN thes arc

i)
&»

Carry Look Ahead Adder-

» Carry Look Aneac Accer

)

Fol Azzer
A

)

« It generates the carry-in of each full adder simultaneously without causing any delay

+ The time complexity of carry look ahead adder = © (logn)

Logic Diagram-

The logic diagram for carry look ahead adder is as shown below-

W

L

Comb Ckt

Comb Ckt

$

)

L

Comb Ckt

L

Full Adder
: |
Cs 82

- -

MO B0 Ll

Full Adder Full Adder
g -
Ci 82 C2 §1

Carry Look Ahead Adder Logic Diagram

Carry Look Ahead Adder Working-

The working of carry look ahead adder is based on the principle-

L1
33

The carry-in of any stage full adder is independent of the carry bits generated during intermediate

Tne carry-in of any stage full adder depends only on the following two parameters-

stages

« Bus being added in the previous stages

» Carry-in provided in the beginning

Now,

« The above two parameters are always known from the beginning
+ So, the carry-in of any stage full adder can be evaluated at any instant of ime

enerated by its previous stage full adder

* Thus, any full adder need not wait until its carry-in is g

Also Read- Full Adder Working

4-Bit Carry Look Ahead Adder-

Consider two 4-bit binary numbers A3A>A1Ag and B3B,B,Bg are 1o be added.

Mathematically, the two numbers will be added as-

8z 8 ‘—g& ‘—go

Adding two 4-bit Numbers

is called carry generator

C; =CoPy + Go (1)
C:=CP1 + Gy (2)
C3=CaP2 +G; ©)
Ca=C3P3+Gg..cocnninnnn, &)

Nadw,
C1. C2 and C3 are intermediate carry bits.
= S¢. let's remove Cy, C; and C;3 from RHS of every equation.
« Subsouong (1) in (2), we get C; in terms of Cq.

« Then, subsowong (2) in (3), we get C; in terms of Cg and so on.

Sinalty we have the followang equations-

* Cy =CoPp +Gg

« Co=CoPpP1 +6GgP1 + 61

» C3 = CgPoP1P2 + GgP1P2 + G1P2 + G2

=CaPgPP2P3 + GgP1P2P3 + G1P2P3 + G2P3 + G3

These eguatons ars impertant to remember.

These squanons show that the carmy-in of any stage full adder depends only on-

S being added i the previous stages

B
* Carry bt which was prowded in the beginning

As an example, let us consider the equation for generating carry bit C;

ere are three possible reasons for generation of C; as depicted in the followaing picture-

(@
I

-
i“

OR OR

Either itis Co & propagated Itis generated in stage So Itis generated
through stages So and $1 & then propagated in stage $1

through stage S1

In the similar manner, we can write other equations as well very easily.

Implementation Of Carry Generator Circuits-

The above carry generator circuits are usually implemented as-

« Two level combinational circuits.

- Using AND and OR gates where gates are assumed to have any number of inputs.

Implementation Of C;-

» The carry generator circuit for C1 is implemented as shown below.

» It reguires 1 AND gate and 1 OR gate.

- o -
A s e g A

mpemertatior 4 O -

= T - s G £ ax Gan o » = &
E ATy P Sy T T L & e K 20 AN ey
» T Egares L AN gaes et 1 O gl

T > A 7

)

implementation U C: 8 0y

Wad

Similarly, we implement C4 and "

* Impleme
piementation of C3 uses 3 AND gates and 1 OR gate

* im
'mplementation of C uses 4 AND gates and 1 OR gate

Total n
umber of gates required 1o implement carry generators (provided carry propagators P, and carry

generators G,) are-

+ Total number of AND gates required for additon of 4-bit numbers = 1 + 2+3+4=10

+ Total number of OR gates required for addiion of 4-bit numbers = 1+ 1 + 1+1=4

General Formula-

The following formula is used to calculate number of gates required for evaluating all carry bits-

For a n-bit carry look ahead adder to evaluate all the carry bits, it requires

« Number of AND gates = n(n+1) / 2

» Number of OR gates = n

Advantages of Carry Look Ahead Adder-

The advantages of carry look ahead adder are-

» It generates the carry-in for each full adder simultaneously.

« It reduces the propagation delay.

Disadvantages of Carry Look Ahead Adder-

The disadvantages of carry look ahead adder are-

« It involves complex hardware.
« It is costlier since it involves complex hardware.

» |t gets more complicated as the number of bits increases.

To gain better understanding about Carry Look Ahead Adder,

VFMM_CodeforPanunFuHAdder

library Tfte;
use IFIl..SH)w!O(nl(”l](-d.M L3

entity Partial Full Adder is
Port AL in STD LOGIC;

B : in ST0_LOGIC;

Cin : in STD L0GIC;

S @ oout SID LOGIC;

P i out STD LOGIC;

G : out STD LOGIC);

end Partial full Adder;

architecture Behavioral of Partial Full Adder is
begin

S <= A xor B xor Cin;
P <= A xor B;
G <= A and B;

end Behavioral;
VHDL Code for Carry Look Ahead Adder

library IEEE;
use IFEF.STD_LOGIC_1164.ALL,

entity Carry Look Ahead is

Port (A : in STD_LOGIC_VECTOR (3 downto ©);
B : in STD _LOGIC VECTOR (3 downto 9);

Cin : in STD _LOGIC;

S : out SID_1OGIC_VECTOR (3 downto 0);

Cout : out STD_LOGIC);

end Carry Look Ahead;

architecture Behavioral of Carry_lLook_Ahead is

component Partial Full_Adder
Port (A : in STD_LOGIC;

B : in STD _LOGIC;

Cin : 4n STD_LOGIC;

S : out SID_LOGIC,

P : out STD LOGIC;

G : out STD_L0OGIC);

end component

signal c1,c2,c¢3: STD_LOGIC,
signal P,G: STD LOGIC VECTOR(3 downto 0);
begin

A
PFAL: Partial full Adder port map(A(0), B(8), Cin, S(0), P(80),
G(0));

. it
PEA2. Parti £l) . ' af1). i 1), F
FA2: Partial Full Adder port Bapy -'i\‘\, S\ils L4 201}, N
*\)\
N - N LA o
2 3 - afl9) af 2) c2 _) r
PEA3: Partial Full Adder port map(A(2), Bisi» =% =4 A
B Y\)
N - N o008 o
af2 -3 Yy P(3
PFAL: Partial Full Adder port mapl A(3), B(3), ©3, (30 °W°
2(3))
3));
5 A
<= 6@ W (P(2) AND CInd; pig) Cin);
(2 <=0 R (P(1) AND G(@)) R S01) AND P(@) AND L27),
C& &= U&7 W LTS WS : \,‘ 2(1) AND G(@)) OR
3 R (1 R (P E oY .
¢3 <= G(2) OR (PQ2) AN (1)) OR (Fi< AND P2 \

:‘:‘-\‘i‘:l‘-\\f‘-‘ﬂ\.& Cin);
-l Seat B OB02) AD G(2)) OR (P(3) AN F 2(2) AN C\ln

cout <= \‘\.: U (P 5 - 1)
(P(3) A0 P(2) A P(1) AN g(2)) OR (P(3) AND r\-\ AND P{
p(@) AND Cin);

ARCHITECTURE behavior OF T:_Carr)_Look_Ahead IS

- Lie = Tact fI1R]
component Declaration for the Unit Under Test {WUT)

== LGNS - s

COMPONENT Carry_Look_ahead

PORT

A - IN std logic_vector(3 downto 3);
g : IN std_logic_vector(3 downto 2);
Cin : IN std logic;

S : OUT std_logic_vector(3 downto 2);
Cout : OUT std_logic

)

Inputs
A . std logic_ 3 downto @) := (others => '@’)
3 downto @) := (others => '2")

.
2
L

m"‘r\

-- Instantiate the Unit Under Test (WUT)
wut: Carry_Lock_Ahead PORT MAP (

=>4,

B => B,

Cin => Cin,

OR
Y AND

