VLSI Desien - VHDL Introduction

VHDL stands for very high-speed integrated circuit hardware description language. Itisa
programming language used to model a digital system by dataflow, behavioral and structural
stvle of modeling. This language was first introduced in 1981 for the department of Defense
(DoD) under the VHSIC program.

Describing a Design

In VHDL an entity is used to describe a hardware module. An entity can be described using,

« Entity declaration
e Architecture
e Configuration
o Package declaration
o Package body
Let’s see what are these?

Entity Declaration

It defines the names, input output signals and modes of a hardware module.

Syntax —

entity entity name is
Port declaration;
end entity name;

An entity declaration should start with “entity’ and end with ‘end’ keywords. The direction
will be input, output or inout.

IIn ”%rt can be read ol
Butg”l?m can be written J

llnout IE” can be read and written J
Exffer ﬁ’ort can be read and written. it can have only one sourc&ll

Architecture —

Architecture can be described using structural, dataflow, behavioral or mixed style.

Syntax —

architecture architecture name of entity name
architecture declarative part;
begin

Statements;
end architecture name;




Here, we should specify the entity name for which we are writing the architecture body. The
architecture statements should be inside the ‘begin’ and *énd’ keyword. Architecture
declarative part may contain variables, constants, or component declaration.

Data Flow Modeling

In this modeling style, the flow of data through the entity is expressed using concurrent
(parallel) signal. The concurrent statements in VHDL are WHEN and GENERATE.

Besides them, assignments using only operators (AND, NOT, +, *, sll, etc.) can also be used
to construct code.

Finally, a special kind of assignment, called BLOCK, can also be employed in this kind of
code.

In concurrent code, the following can be used —

e Operators
e The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);
o The GENERATE statement;
e The BLOCK statement
Behavioral Modeling

In this modeling style, the behavior of an entity as set of statements is executed sequentially
in the specified order. Only statements placed inside a PROCESS, FUNCTION, or
PROCEDURE are sequential.

PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code that are
executed sequentially.

However, as a whole, any of these blocks is still concurrent with any other statements placed
outside it.

One important aspect of behavior code is that it is not limited to sequential logic. Indeed, with
it, we can build sequential circuits as well as combinational circuits.

The behavior statements are IF, WAIT, CASE, and LOOP. VARIABLES are also restricted
and they are supposed to be used in sequential code only. VARIABLE can never be global,
so its value cannot be passed out directly.

Structural Modeling

In this modeling, an entity is described as a set of interconnected components. A component
instantiation statement is a concurrent statement. Therefore, the order of these statements is
not important. The structural style of modeling describes only an interconnection of
components (viewed as black boxes), without implying any behavior of the components
themselves nor of the entity that they collectively represent.

In Structural modeling, architecture body is composed of two parts — the declarative part
(before the keyword begin) and the statement part (after the keyword begin).



Experiment -1: Write a VHDL code for all the logic gates

Objective:

The objective of this experiment is to:

i. To revise the working of various logic gates
ii. To learn the VHDL coding
1il. To simulate for functional verification

v. To implement on CPLD / FPGA
1. TITLE: AND gate

TRUTH TABLE: S

0 0 0 s | F o
© i i W

0 1 0

I 0 0

Logic Equation:
Z=X.Y
This equation can be used for describing the dataflow model of AND architecture

We observe that the output is high when both X and Y are high ‘1°, otherwise the output is

low ‘0°. The property can be used in modeling the sequential behaviour
VHDL CODE:

Library IEEE;
use IEEE.std_logic_1164.all;
entity AND?2 is
port(
A :in STD LOGIC;
B:in STD_LOGIC;
C:out STD LOGIC



);
end AND?2;

-- The three architectural models are given below:
--1.  Dataflow model
architecture behavl of AND?2 is
begin
C<=Aand B; --Signal Assignment Statement
end behavl;
-- 2. Behavioral model

architecture behav2 of AND2 is

begin
process (A, B)
begin
if (A="1' and B="1") then
C<="1"%
else
C<="0';
end if;

end process; end behav2;

OUT PUT WAVE FORM:

b W T=T2 AR AR Q2 rs[E]e e

..............................

WY | B



2. TITLE: OR gate

TRUTH TABLE:
X y z R
0 0 0 g7 ja
0 1 1
1 0 1
1 1 1

Logic Equation:
i. Z=X+Y This can be used for describinbg the dataflow model of AND
architecture
ii. We observe that the output is high when any or all the inputs X and Y are high
‘1", otherwise the output is low ‘0’. The property can be used in modeling the
sequential behaviour
VHDL CODE
Library IEEE;
use IEEE.std_logic 1164.all;
entity OR2 is
port(
x :in STD_LOGIC;
y : in STD_LOGIC;
z :out STD_LOGIC

end OR2;
--Dataflow model
architecturc behavl of OR2 is
begin
Z<=xory; --Signal Assignment Statement
end behavl;
-- Behavioral model

architecture behav2 of OR2 is



begin
process (X, y)
begin
if (x='0" and y='0") then
Z<=0,
else
7<="1
end if;

end process; end behav2;

OUTPUT WAVEFORM:

DU | H Y




3. TITLE: NOT gate

TRUTH TABLE:

/J | (1

0 A J
I 0

1. Y=X’ This can be used for describing the dataflow model of AND

architecture
2. We observe that the output is high when inputs X low ‘0°, and the output is low

when input X is high ‘1°. The property can be used in modeling the sequential

behavior
VHDL CODE:
Library IEEE;

use IEEE.std_logic_1164.all;
entity notl is
port(
X: in STD_LOGIC;
Y: out STD_LOGIC
);
end notl;
--Dataflow model
architecture behavl of notl is
begin
Y<=not X; --Signal Assignment Statement
end behavl;
-- Behavioral model
architecture behav2 of notl is
begin
process (X)



begin

if (x='0" then == Compare with truth table

Y<="'1%
else
Y<='04
end 1f}

end process;
end behav2;

OUTPUT WAVEFORM for NOT Gate:

1Ol BN

4. TITLE: NAND gate
TRUTH TABLE:

X y z e "“‘T _\;(,- i I
0 0 | B

0 1 1

1 0 1

1 1 0

i. Y=(X.Y)' This can be used for describing the dataflow model of AND
architecture
ii. We observe that the output is high when any or all inputs X and Y are low ‘0°, and

the output is low when all input are high ‘1’. The property can be used in modeling
the sequential behavior

VHDL CODE:



Library IEEE;
use [EEE.std_logic_1164.all;
entity nand2 is
port(
x : in STD_LOGIC;
y : in STD_LOGIC;
z :out STD_LOGIC
)i
end nand2;
--Dataflow model
architecture behavl of nand2 is
begin
z<=x nand y; --Signal Assignment Statement
end behavl;
-- Behavioral model

architecture behav2 of nand2 is

begin
Process (X, Y)
Begin
If (x='1" and y="1") then
Z<="'0,
else
Z>='l;
end if;

end process; end behav2;

OUTPUT WAVEFORM

rOQO M B Y




5. TITLE: NOR gate
TRUTH TABLE:

i. Y=(X+Y)’ This can be used for describing the dataflow model of AND

architecture

ii. We observe that the output is high when all inputs X and Y are low ‘0°, and the

output is low when any or all input are high

modeling the sequential behavior
VHDL CODE:
Library IEEE;
use [EEE.std_logic_1164.all;
entity nor2 is
Port (
X: in STD_LOGIC;
Y: in STD_LOGIC;
Z: out STD_LOGIC
);
end nor2;
—-Dataflow model
architecture behavl of nor2 is
begin
Z<=xnory;
end behavl;
-- Behavioral model

architecture behav2 of nor2 is begin

‘1°. The property can be used in

.



e a1
g ¥

process (x, y)
begin
--Signal Assignment Statement
If (x='0" and y='0") then
Z<="1"
else
Z<="0
end if;
end process;
end behav2;
OUTPUT WAVEFORM:

QO MUY

6. TITLE:EX-OR gate
TRUTH TABLE:

a. Y=(X°°Y+X.Y’) This can be used for
describing the dataflow model of AND
architecture

b. We observe that the output is low when all
inputs X and Y are low ‘0’ or when all the
inputs are high. The output is high when any
input is high ‘1°. The property can be used in

modeling the sequential behavior

X y

0 0 0
0 1 ]

1 0 1
1 1 0




VHDL CODE:

Library IEEE;

use IEEE.std_logic_1164.all;
entity xor2 is

Port ( X: in STD_LOGIC;
Y:in STD_LOGIC;
Z: out STD_LOGIC
);
end xor2;

--Dataflow model
architecturedataflow of xor2 is
begin

Z<=x x0rY,; --Signal Assignment Statement
enddataflow;
--behaviour modelling

architecture behav2 of xor2 is

begin
process (X, Y)
begin
If (x/=y) then
Z<="1%
else
7<="0"
end if;

end process;
end behav2; OUTPUT WAVEFORM

QO ¥EN %




Implementation of XNOR

Symbol:

[v [z |

O

X
A e

Y e ol

s i o o |

T

Data flow model

VHDL Code:

Library ieee;
use ieee.std_logic_1164.all:

entity xnorl is
port{(a,b:in bit ; c:out bit);
end xnorl;

architecture virat of xnorl is
begin

c<=not (a xor b):
end virat;

Behavioural model

Library icee;
use iece.std logic_1164.all;

Entity XNOR_ent is
port( x: in std_logic;
y: in std_logic:
F: out std_logic
)

End XNOR _ent;

architecture behvl of XNOR_ent is

begin
process(X, ¥)
begin
-- compare to truth table
if (x/=y) then
F <='0";
else
gF=="1";
end if;

end process;

end behvl;




T T aad ora
Uuse ‘e 3LQ O
LR . Y .
€ LY XR€ . s
] L By @ . T 1D \ s
DO t‘l.t‘-. 28 . e s A DA
Ay LY Y.
SN XL L3
. : ’ R
architecture virat of RGP 1 8
ey
begl
c<=a XOr b}
K} LY
ena virac

———

Waveforms

e T e A 5

S (0w '

Ay \





{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Form", "isBackSide": false }


{ "type": "Form", "isBackSide": false }

